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ABSTRACT

Osteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident
fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not
known. We evaluated these effects in an osteoporotic rat model. Six-month-old ovariectomized (OVX) rats were treated with placebo,
alendronate (ALN, 2 p.g/kg), parathyroid hormone [PTH(1-34); 20 wg/kg], or raloxifene (RAL, 2 mg/kg) three times a week for 4 months
and withdrawn from the treatments for 8 months. Treatment with ALN, PTH, and RAL increased the vertebral trabecular bone volume
(BV/TV) by 47%, 53%, and 31%, with corresponding increases in vertebral compression load by 27%, 51%, and 31%, respectively
(p <.001). The resulting bone strength was similar to that of the sham-OVX control group with ALN and RAL and higher (p <.001) with
PTH treatment. After 4 months of withdrawal, bone turnover (BFR/BS) remained suppressed in the ALN group versus the OVX controls
(p <.001). The vertebral strength was higher than in the OVX group only in ALN-treated group (p < .05), whereas only the PTH-treated
animals showed a higher maximum load in tibial bending versus the OVX controls (p < .05). The vertebral BV/TV returned to the OVX
group level in both the PTH and RAL groups 4 months after withdrawal but remained 25% higher than the OVX controls up to 8 months
after withdrawal of ALN (p < .05). Interestingly, cortical bone mineral density increased only with PTH treatment (p < .05) but was not
different among the experimental groups after withdrawal. At 8 months after treatment withdrawal, none of the treatment groups was
different from the OVX control group for cortical or cancellous bone strength. In summary, both ALN and PTH maintained bone strength
(maximum load) 4 months after discontinuation of treatment despite changes in bone mass and bone turnover; however, PTH
maintained cortical bone strength, whereas ALN maintained cancellous bone strength. Additional studies on the long-term effects on
bone strength after discontinuation and with combination of osteoporosis medications are needed to improve our treatment of
osteoporosis. © 2011 American Society for Bone and Mineral Research.

KEY WORDS: BONE STRENGTH; TREATMENT WITHDRAWAL; ALENDRONATE; PTH; RALOXIFENE

Introduction

number of drugs offer some protection against post-
menopausal bone loss. Alendronate (ALN) and raloxifene
(RAL) are antiresorptive agents that attenuate the decline in
bone mineral density (BMD) and the risk of vertebral fractures in
postmenopausal women.""? Parathyroid hormone (PTH), given
intermittently, is an anabolic agent that increases BMD and
decreases the risk of vertebral and nonvertebral fractures in
postmenopausal osteoporosis.® While bisphosphonates such as

ALN may accumulate in the skeleton and have continual effects
on suppression of bone resorption,™ the effects of RAL and PTH
on bone mass are not maintained long after discontinuation of
the drugs, and bone loss resumes within a few months in
osteoporotic patients.” Several clinical studies have examined
the optimal treatment period and changes in areal BMD
following discontinuation of these medications, but the effects
on bone strength and quality have not been thoroughly
investigated. Also, it is not clear whether the anabolic treatment
can offer more long-term protection against bone fracture than
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antiresorptive treatments alone. Cosman and colleagues®

reported that the PTH-induced bone mass increment in
postmenopausal women was maintained for 1 year after
discontinuation of PTH and that no clinical fractures occurred
if it was continued with estrogen therapy. Lindsay and
colleagues”’ reported a sustained vertebral fracture risk
reduction up to 18 months after withdrawal of teriparatide in
osteoporotic women who had received the drug daily for 18
months. Black and colleagues® reported that gains in BMD after
1 year of PTH therapy were maintained if ALN was given, but
nearly half the gain was lost if the antiresorptive did not follow.
Lane and colleagues® showed that PTH-induced increases in
bone mass were maintained for 1 year in glucocorticoid-induced
osteoporosis when hormone-replacement therapy was contin-
ued after PTH withdrawal in postmenopausal women. In most of
these studies, osteoporosis drugs were used during the
withdrawal time, confounding interpretation of the endpoint
variables for durability of the effects related solely to the original
medication. As for preclinical studies, very limited data are
available on the recovery of bone turnover after withdrawal of
bisphosphonate therapy®® and changes in areal BMD following
discontinuation of PTH treatment in rats."® Using an osteo-
porotic rat model, we report a series of bone structural and
material properties related to changes in bone turnover and
bone mass during withdrawal of antiresorptive and anabolic
agents commonly used for treatment of osteoporosis. During
treatment, the increases in bone mass in trabecular sites were
similar with all drugs, whereas after discontinuation of the
treatments, there were treatment-specific differences in cortical
versus trabecular bone turnover and mechanical properties.

Materials and Methods

Animals and experimental procedures

Four-month-old female ovariectomized (OVX) or sham-operated
Sprague-Dawley rats were purchased from Harlan Industries
(Livermore, CA, USA). Rats were maintained on commercial
rodent chow (Rodent Diet, Teklad, Madison, WI, USA) with 0.95%
calcium and 0.67% phosphorus in a room with 21°C temperature
and a 12-hour light/dark cycle. All study animals were pair fed
during the entire experiment, approximately 18 g of rodent chow
a day, to prevent excessive postovariectomy weight gain. The
study protocol was approved by University of California Davis
Institutional Animal Care and Use Committee. The OVX rats were
left untreated for 2 months to develop osteopenia. Figure 1
summarizes the study timeline and the experimental groups. At

6 months of age, pretreatment measurements were obtained
from sham-operated and OVX groups (n=12/group). The
remaining OVX animals were randomized by body weight into
four groups (n=36/group): OVX control [treated with saline
three times per week by subcutaneous (s.c.) injection], ALN
(2 pg/kg/dose three times per week by s.c. injection), PTH(1-34)
(20 pg/kg/dose three times per week by s.c. injection), and RAL
(2 mg/kg/dose three times per week by oral gavage). Treatments
were given for 4 months, after which 12 rats from each group
were killed, and the remaining animals were continued for an
additional 4 or 8 months of withdrawal with no more active
treatments, when 12 rats per treatment group were killed at each
time point (Fig. 1).

Urine samples were collected from all experimental groups for
the deoxypyridinoline (DPD) assay of bone resorption at baseline
and during treatment and withdrawal periods. In vivo micro-
computed tomographic (wCT) scans of the proximal tibia were
obtained during the treatment and withdrawal periods to
monitor the changes in bone mass and microarchitecture. Ex
vivo nCT measurements were obtained from the fifth lumbar
vertebra (Ls) and femoral mid-diaphysis for bone mass and
architectural evaluations, as well as cortical mineral density.
Histomorphometric measurements of surface-based bone turn-
over were obtained from the proximal tibial metaphyses and the
midshaft of the tibia from all animals by labeling the skeleton
with calcein (10 mg/kg s.c.; Sigma-Aldrich, St Louis, MO, USA) 10
and 3 days before killing at each time point. Bone mechanical
properties were examined by compression test of the sixth
lumbar vertebra (Lg) and bending test of the left tibia. The
compression test of the vertebral bodies also was simulated
using finite-element analyses of mineral and architectural data to
estimate bone stiffness and the apparent modulus."" Details of
each measurement are presented below.

wCT measurements of bone architecture and mineral
density of bone tissue

In vivo scans of the proximal tibial metaphysis (PTM) were
obtained after 4 months of treatment and at 2, 4, and 8 months
during treatment withdrawal using pnCT (viva CT40, Scanco
Medical, Bassersdorf, Switzerland). This allowed monitoring of
the changes in BV/TV and bone microarchitecture after the
discontinuation of treatments. Rats were anesthetized with
isoflurane during the entire scan, which lasted about 20 minutes.
The scans were obtained at a high resolution of 10.5 pum from the
tibial metaphysial region 1.5 mm below the growth plate and
extending for 2.2 mm. A 2D TIF image with reference lines was
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Fig. 1. Study design. Treatment started 2 months after OVX surgery in female Sprague-Dawley rats. Animals were treated three times per week for
4 months with either saline (sham and OVX controls), ALN (2 p.g/kg), hPTH(1-34) (20 .g/kg), or RAL (2 mg/kg). Twelve animals per treatment group were
killed at baseline, after treatment, and at 4 and 8 months after discontinuation of treatment.
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saved from each scan to ensure that the same region of scan was
evaluated during serial imaging. Ex vivo pnCT scans were
obtained from the fifth lumbar vertebral bodies (Ls) and femoral
midshafts for all the animals studied. A 2.2-mm-long central
cross-sectional region of each vertebra was scanned at an energy
level of 70 kVp and intensity of 85 WA with an isotropic resolution
of 10.5uwm in all three spatial dimensions. Bone volume/total
volume (BV/TV), trabecular thickness (Tb.Th), trabecular number
(Tb.N), connectivity density, and separation (Th.Sp) are reported
for each vertebral site. In addition, the femoral midshaft was
scanned (95 slices with 10.5-um resolution and 325-ms
integration time) to evaluate changes in cortical bone volume,
architecture, and mineral density. The scan region was selected
using reference lines positioned at the top of femoral head and
at the base of medial condyle.

Deoxypyridinoline assay

Urinary DPD and creatinine (Cr) were measured using an EIA kit
(Quidel, San Diego, CA, USA) at baseline, 1 month after
treatments began and were withdrawn, and bimonthly there-
after throughout the study. The assay provided a measure of
excretion of DPD cross-links as an indicator of bone resorption.
The urine samples were collected by placing rats in individual
metabolic cages and were diluted 50 times with deionized water.
The DPD and Cr concentrations of samples were determined in
duplicate using a microplate reader (SpectraMax M2, Molecular
Devices, Sunnyvale, CA, USA) and according to the manufac-
turer's recommendations. The DPD results were corrected for
variations in urine concentration by dividing the values by the
Cr value. Samples with high concentrations or coefficients
of variation over 10% were further diluted or repeated for
measurement to fit into the four-parameter calibration curve
used to calculate the concentrations, as reported previously from
this laboratory.'?

Bone histomorphometry measurements

Dynamic bone histomorphometric measures were obtained
from proximal (PTM) and midshaft tibias (TX) of each animal.
Bone samples were fixed, dehydrated, and embedded unde-
calcified in methyl methacrylate. Metaphyseal sections of 4 and
8 pm thick were cut using a microtome (Leica RM 2265, Leica
Microsystems, Nussloch GmbH, Germany). Mid-diaphyseal cross
sections 40 um thick were cut using a diamond wire saw (Well
3241, Norcross, GA, USA). The 4-pm sections were stained with
tetrachrome and mounted with Permount. The 8-pm PTM and
40-pm TX sections were left unstained for fluorescent micro-
scopy using image-analysis software (Bioquant Image Analysis
Corporation, Nashville, TN, USA). Bone areas and perimeters were
measured at a magnification of x25 and indices of bone
formation and cell surfaces at x250. Bone measurements
included percent of trabecular bone surface covered by
osteoclasts (Oc.S/BS) and single- and double-labeled perimeters
and interlabeled width, from which mineralizing surface (MS/BS),
mineral apposition rate (MAR), and bone-formation rate (BFR/BS)
were calculated according to the ASBMR guidelines for bone
histomorphometry."

Biomechanical testing

Mechanical properties of bone were determined by compression
of lumbar vertebral body (L) and bending of tibia. The vertebral
endplates were removed using a wafer saw and polished to flat
surfaces. The height of the vertebral body and the average
caudal and cranial diameters were measured using a caliper for
calculation of cross-sectional area and estimation of material
properties. The bone was loaded using an electroservohydraulic
materials testing system (Model 831, MTS, Eden Prairie, MN, USA)
at a displacement rate of 0.01 mm/s. Maximum load, yield stress,
maximum stress, and the elastic modulus were obtained from
the compression tests of vertebral bodies. A similar displacement
rate was used to measure tibial strength in a three-point bending
test after cutting off the proximal and distal ends. The bone
specimens were loaded such that the posterior surface was in
tension and the anterior surface in compression. Following
bending, the broken halves of bones were examined for the
fracture surface in an environmental scanning electron micro-
scope (Hitachi S-4300SE/N ESEM, Hitachi America, Pleasanton,
CA, USA). The cross-sectional area and the second moment of
inertia were calculated from the scanning electron microscopic
(SEM) image taken using ImageJ software (NIH: http://rsb.info.-
nih.gov/ij) from fracture surfaces. The yield stress was deter-
mined at 0.2% plastic strain and the maximum stress at peak
load." Elastic modulus values in bending and compression
were calculated from the slope of the linear region of the stress-
strain curve.

To analyze the biomechanical properties of the vertebral body
with relative contribution of the cortical shell and the trabecular
core, a pnCT-based finite-element model was used for each rat
vertebra with a 10.5-p.m voxel size. The model simulated uniaxial
vertebral compression loading with the cranial and caudal ends
fixed in between two loading planes. The cortical and trabecular
bone were segmented by manually tracing the endosteal surface
of the cortex for every 15 slices from each scan of 2.2mm
obtained from the central vertebral body, where the bone mass
and architectural parameters were evaluated. The pCT images
then were incorporated into the model as described by Ladd and
colleagues.” The 3D image voxels were converted to elements,
and each element segmented as bone was assigned a Young’s
modulus of 18 GPa and a Poisson’s ratio of 0.3, as reported
previously."® Details of the numerical method have been
published elsewhere."”'® The boundary conditions that defined
the load platen-specimen interface were assumed in the model
to be frictionless. Vertebral stiffness, apparent modulus,
trabecular tissue strength, and changes in the load-carrying
capacity of the vertebral trabecular bone with treatments were
calculated from finite-element analyses, as reported previously
by this group.'?

Statistical analysis

Initial summary statistics (mean and SE) were calculated for the
outcome, bone strength, which was measured with the vertebral
maximum load variable, and for five bone structure covariates of
interest: vertebral trabecular BV/TV, vertebral Tb.Th, vertebral
Th.N, vertebral cortical bone volume (BV), and vertebral cross-
sectional area.
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We then investigated three possible mechanistic hypotheses:
(1) Bone structure is affected by treatment and, in turn, affects
vertebral maximum load, (2) bone structure and vertebral
maximum load are both affected by treatment, and (3) treatment
and bone structure both affect vertebral maximum load. To
determine what role each bone structure covariate may have in
affecting vertebral maximum load, we created two types of
models: (1) linear regression models that examine the effects of
OVX, treatment, and treatment withdrawal on each bone
structure measurement (this was done separately for vertebral
trabecular BV/TV, vertebral cortical BV and Ct.Th, vertebral Th.Th,
vertebral Th.N, and vertebral cross sectional area) and (2) linear
regression models that examined the changes in treatment
effects (both after treatment and during treatment withdrawal)
on vertebral maximum load when bone structure covariates are
included individually. This was done separately for vertebral
trabecular BV/TV, vertebral Th.Th, vertebral Th.N vertebral
cortical BV and Ct.Th, and vertebral cross-sectional area. To
get initial information on WCT measurements of vertebral
trabecular and femoral cortical bone and urinary DPD, ANOVAs
were created at each time point. Most calculations were
performed in R 2.0 (www.r-project.org), with the ANOVAs
created in Minitab (Minitab, Inc., State College, PA, USA).

Results

The study medications generally were well tolerated over the 14-
month study period; however, 8 of 215 rats (approximately 4%)
were removed from the study owing to development of tumors
of different types. Administration of the study medications did
not affect the weights of the rats.

WCT measurements of vertebral trabecular and femoral
cortical bone

The data obtained using pwCT from in vivo imaging of the
proximal tibia 2 months after discontinuation of treatment
indicated no difference between the PTH or RAL groups and OVX
controls in BV/TV (Fig. 2), Th.N, and trabecular connectivity;
however, the ALN group had higher values than the OVX control
group for all these parameters (p < .001), which remained higher
until 8 months following treatment withdrawal. The ex vivo
vertebral bone mass and architectural results are presented in
Table 1. ALN, PTH, and RAL increased the vertebral trabecular BV/
TV of OVX animals by 47%, 53%, and 31%, respectively (p <.001),
which was comparable with sham only with PTH treatment.
Th.Th was similar to sham with ALN and RAL and higher than
sham with PTH treatment (p < .001), whereas Tb.N was restored
to the sham level only with ALN treatment. .CT scans of the
midshaft of the femur showed an increase in Ct.Th with all active
treatments (p <.001), but cortical BV increases were significant
only in the ALN (p <.001) and PTH (p < .05) groups. Of the active
treatments, only PTH increased the cortical mineral density
compared with untreated OVX animals (1138 versus 1125 mg
HA/cm?, p < .05; Table 1.

Animals withdrawn from PTH and RAL treatment appeared no
different from their OVX control in vertebral BV/TV and
architectural parameters. However, animals withdrawn from
ALN had at least 20% higher BV/TV than their OVX controls
(p < .05) that was maintained up to 8 months of withdrawal.
They also showed higher Tb.N (p < .05) and connectivity density
(p<.001) and lower Tb.Sp (p < .05) than the OVX control group.
Similarly, the femoral cortical BV and Ct.Th were higher than in
the OVX animals only in ALN-withdrawn animals and up to
8 months (p <.001). The overall effect of administration and

18
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2 Months Withdrawal

4 Months Withdrawal B Months Withdrawal

Fig. 2. In vivo n.CT scans of proximal tibia metaphysis in rats after 4 months of treatment with ALN, hPTH(1-34), and RAL and at 2, 4, and 8 months
following treatment withdrawal. Double and single asterisks indicate p <.001 and p < .05, respectively, for comparison with OVX control group at each

time point.
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Fig. 3. Timeline effect of ALN, hPTH(1-34), and RAL on vertebral trabecular bone volume (BV/TV) of OVX rats and changes at 4 and 8 months after
withdrawal of the treatments. All three drug treatments increased BV/TV of OVX animals. PTH and RAL withdrawal resulted in a fall of BV/TV to OVX control
levels, whereas animals withdrawn from ALN treatment maintained a 20% higher BV/TV than OVX animals for 8 months. Double and single asterisks
indicate p <.001 and p < .05, respectively, for comparison with OVX control group at each time point.

withdrawal of treatments on vertebral trabecular BV/TV is shown
in Figure 3.

Urinary deoxypyridinoline

Osteoclast activity was determined by measurement of the
bone-related degradation product of DPD cross-links in urine. As
expected, the OVX control rats showed an increase in DPD
(p <.001), which was maintained higher than in the sham group
throughout the experiment (Fig. 4). Treatment with ALN

decreased the levels of urinary DPD to those seen in the sham
group and to lower than sham levels after 4 months of treatment
(p <.05). The urinary levels of DPD in ALN-treated rats remained
at sham control levels during the 8-month withdrawal period.
Raloxifene also reduced the OVX-induced rise in urinary DPD
soon after initiation of the treatment such that after 4 months of
treatment, the DPD levels were as low as those observed in the
sham group. However, 2 months after discontinuation of RAL,
DPD levels increased to OVX control group levels and remained
high for the rest of the experiment. Treatment with PTH did not

DPD (NmaliL)
]

Treatment

e (R

Withdrawl

Moiith of Study

Fig. 4. Urinary DPD cross-links of collagen adjusted for urinary creatinine level in rats from different experimental groups during treatment and
treatment withdrawal periods. Double and single asterisks indicate p <.001 and p < .05, respectively, for comparison with OVX control group at each

time point.
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affect the levels of urinary DPD compared with the OVX control
group, although there was a tendency to higher values after
discontinuation of treatment.

Bone histomorphometry

Histomorphometric results of tibial cancellous and cortical bone
are summarized in Table 2. Compared with the OVX control
group, treatment with ALN, PTH, and RAL increased trabecular
BV/TV by 71%, 90%, and 43%, respectively, with only the PTH
mean value being similar to that of sham group. Histomorpho-
metry also revealed differences in the cellular response to drugs.
OVX animals had a 100% increase in Oc.S./BS versus the sham
group. Treatment with PTH further increased Oc.S./BS, whereas
ALN and RAL treatments reduced Oc.S./BS in OVX rats to sham
levels (p <.01).

The endocortical BFR/BS was 10-fold higher in OVX versus
sham groups and suppressed by 55% to 75% with antiresorptive
treatments. Following withdrawal of the treatments, only rats in
the ALN group had a higher BV/TV versus the OVX group
(p<.001), consistent with their lower Oc.S/BS. Rats withdrawn
from RAL and PTH treatments showed higher rates of MS/BS
(p <.05), MAR (p < .001), and BFR/BS (p < .001) for 4 months, but
after 8 months of withdrawal, the values were not different from
those of the OVX control group. Surface-based bone formation,
as measured by BFR/BS, was suppressed with ALN and RAL by
74% and 35%, respectively (p <.001), and increased with PTH by
35%. The increase in BFR/BS with PTH was mainly due to an
increase in bone mineralizing surface.

The endocortical BFR/BS after 4 months of withdrawal was
higher than in the OVX control group in the PTH- and RAL-
treated groups only (p <.05); however, it appeared unchanged
across all experimental groups after 8 months of withdrawal. The
periosteal bone formation, except for a very few animals in the
OVX and PTH groups at 4 months of withdrawal, was essentially
absent in all the treatment and withdrawal groups.

Mechanical testing for whole and localized bone strength

Table 3 summarizes the bone mechanical properties obtained
from lumbar compression and tibial bending tests. Compared
with the sham group, vertebral bone in OVX control animals
showed decreases in maximum load (p<.05), yield stress
(p<.001), maximum stress (p<.001), and elastic modulus
(p < .05). Increases in vertebral maximum load were observed
following treatment with ALN (27%, p<.001), PTH (51%,
p <.001), and RAL (31%, p <.05), with the PTH group being
even higher than the sham control group (p <.001). Adjusting
the structural strength by vertebral geometry, the increases in
maximum stress were 16%, 37%, and 21% versus the OVX control
group (p<.001 for ALN and PTH and p<.05 for RAL),
respectively. For the tibia, only the maximum stress decreased
with ovariectomy (p < .05), although there were nonsignificant
decreases in yield stress and elastic modulus. Compared with the
vertebral improvements in strength, the increases in tibial
bending strength with the treatments were of smaller
magnitude, 6% to 11%, but statistically significant (p <.05).
None of the parameters of maximum stress, yield stress, or

Table 2. Histomorphometric Parameters of Tibial Metaphyses and Mid-Diaphyses in OVX Rats Following Administration and Withdrawal of Treatment With ALN, hPTH(1-34), and RAL

(Mean =+ SE)

4 mo withdrawal (Age: 14 mo) 8 mo withdrawal (Age: 18 mo)

4 mo Treatment (Age: 10 mo)

OVX+ALN OVX+PTH OVX+ RAL

OVX OVX+ALN  OVX+PTH  OVX+ RAL Sham OVX OVX-+ALN  OVX+PTH  OVX+RAL Sham OVX

Sham

6.6+ 1.0
6.3+06
276 +2.7
0.794+0.09
0.224+0.01

71411

57+04
23.1+£27
0.81+0.1
0.194+0.01

3.7+02"
176 £2.17
0.50 +0.04"
0.09+ 0.01°"

11.04£1.3"
bone-formation rate/bone surface.

46+0.7

55+05
243409
0.76 £ 0.06

0.18 £0.01
0.04+£0.008 0.04+0.007 0.03+0.004 0.03+0.02 0.07+0.028

167 £13™
35+03"

19.8 24"

0.12+0.01"

0.62 £ 0.1

77+0.7

49+04
36.1+3.07
0.60 £ 0.06™"
0.18 +£0.05"

1.76 £0.07** 1.68 +0.07"
mineral apposition rate; BFR/BS

7.6+0.5

68+04
0.62+0.05""
0.13+0.01"

356+2"

3.1+02"
21.2+1.3"

1.25+0.06 1.08 £0.06

11.2+07"
0.39+0.04 0.23+ 0.03"

0.11£0.01

6.8+0.5
6.2+04

308+1.9
mineralizing surface/bone surface; MAR

19.7+£0.8™
29+04"
1.114+0.07
0.27 +0.03"
0.06 £0.008 0.09+0.01

248 +1.5"

123+1.0"
32+03"
21.0+1.17
1.32+0.06"
0.27 +£0.02""
0.09 +0.03"

164 +1.6"
349+1.5™
1.58 +0.06
0.55 +0.04™
0.05+0.01""

71+04
osteoclast surface/bone surface; MS/BS

3.0+04"
“Different from OVX (p < .05) of same age group.

11.3+08"

1.51+0.06 0.83+0.03"

147 +£13"
041+0.02 0.10+ 0.01°"

0.2+0.05 0.05+0.02"

6.5+0.3
275+1.2

86+1

1.35+0.05"

BFR/BS (pm*/pm%d) 0.32+0.02"

19.64+1.2"
32+03"
Tibial Endocortical Mid-diaphyses

236+13"
bone volume/total volume; Oc.S./BS

“*Different from OVX (p <.001) of same age gtoup.

BFR/BS (wm>®/um?/d) 0.02 = 0.004"*

BV/TV (%)
0Oc.S/BS (%)
MS/BS (%)
MAR (pm/d)

BV/TV

Tibial Metaphyses
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bending modulus of tibia showed any improvement with the
drug treatments.

Four months after withdrawal of the treatments, vertebral
strength (maximum load) was still higher than in the OVX control
group (p<.05) and comparable with the sham group mean
value only in the ALN group. The vertebral mechanical
improvements resulting from PTH and RAL treatments were
no longer detectable at this time point of the experiment.
Interestingly, the tibial strength in PTH-treated rats still was
higher than in the OVX control group after 4 months of
withdrawal (p < .05), an effect that was not observed in the ALN
or RAL groups. All the active treatments appeared to have lost
their mechanical effects 8 months after discontinuation
regardless of the skeletal site.

Simulation of the in vitro vertebral compression test using
nCT data and finite-element analyses showed increases in
vertebral bone stiffness, apparent modulus, and average
trabecular tissue stress with all treatments compared with the
OVX control group (p <.001) and were similar in trend to those
observed with bone mass and architectural parameters. The
estimated vertebral stiffness and apparent modulus were
maintained up to 8 months following withdrawal of ALN
(p<.001), whereas with PTH and RAL withdrawal, the values
returned to the OVX control levels, supporting the in vitro
mechanical test results.

Treatment effect on bone strength with the addition of
bone structure covariates

When no bone structure covariates were included in the
prediction of vertebral maximum load (the initial model), after
4 months of treatment, ALN-, PTH-, and RAL-treated rats were
95%, 256%, and 146% higher than untreated OVX rats (p=.01,
p=.06, and p= .01). After 4 months of treatment withdrawal,
PTH and RAL rats experienced a 78% and 72% decline in

320

vertebral maximum load measures, meaning that average
measures were 20% and 32% lower than in untreated OVX
animals. ALN rats did not experience any significant decline in
vertebral maximum load after treatment stopped, and none of
the treatment groups experienced significant decline between 4
and 8 months of withdrawal (Fig. 5).

All the bone structure covariates, when included individually
as predictors in the initial model, were significantly correlated
with baseline measures of vertebral maximum load. Baseline
maximal load was 96% greater for every 1/10 of a unit increase in
vertebral trabecular BV/TV units (p <.01), 32% greater for every
unit increase in vertebral cortical BV (p=.03), 25% greater for
every 1/100 of a point increase in vertebral Tb.Th (p <.01), 62%
greater for every unit increase in vertebral Tb.N. (p < .01), and 5%
greater for every unit increase in vertebral cross sectional area
(p <.01).

When added individually as predictors of vertebral maximum
load, some of the bone structure covariates reduced the increase
in vertebral maximum load measures accounted for by PTH and
RAL treatment. When vertebral trabecular BV/TV was included as
an explanatory variable, the difference between untreated OVX
rats and treated rats at 4 months of treatment was no longer
statistically significant (p=.67, p=.09, and p=.13), and there
also were no significant decreases for these groups after
treatment withdrawal. When vertebral cortical BV, vertebral
Tb.Th, or vertebral cross-sectional area was added to the initial
model as a predictor, the differences between untreated OVX
rats and PTH- or RAL-treated rats after 4 months of treatment still
were statistically significant, but the estimates of the differences
were reduced to 62% and 76%, 85% and 85%, and 81% and 84%
of the initial model estimates. Estimates of the reduction in
vertebral maximum load measures after treatment withdrawal
did not change with inclusion of these three predictors. Adding
vertebral Tb.Th as a predictor did not greatly change any of the
estimates (data on file).

300
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Fig. 5. Trajectories of vertebral maximum load with time. Withdrawal of ALN was not followed by a decline in vertebral strength. Withdrawal of PTH or
RAL led to loss of vertebral strength by 4 months after treatment cessation but without significant additional decline over the next 4 months.
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Discussion

Treatment of 6-month-old OVX rats with ALN, hPTH(1-34), and
RAL for 4 months increased the compressive strength of the
vertebral body and bending load of the tibia. Only animals in the
ALN group maintained the vertebral compressive load 4 months
after withdrawal of treatment, whereas only PTH treatment
maintained the tibial strength. Also, only animals in the ALN
group maintained their gain of bone mass up to 8 months after
withdrawal of treatment.

A number of animal studies have reported rapid loss of
trabecular bone after discontinuation PTH treatment.'%'%2% The
duration of estrogen deficiency, baseline bone turnover, and age
of the animals all influence the skeletal response to PTH
withdrawal. In this study, the animals were treated with a
relatively low dose of PTH (20 g/kg three times per week or
20 g per rat per week), comparable with therapeutic doses used
to treat osteoporotic men and women (0.30 wg/kg seven times
per week or about 140 g per person per week); it is likely that
higher doses would have produced larger increments in bone
mass that could be maintained for longer periods. However, the
general findings from small animal studies is that the anabolic
effects of PTH on trabecular bone sites are lost soon after
discontinuation of treatment unless an antiresorptive agent is
given.?? The rapid loss of bone mass after withdrawal of PTH
treatment has been attributed to rapid depression of osteoblast
activity with a temporary increase in bone resorption that
exceeds bone formation."® Our histology and biomarker
analyses confirmed that osteoclast surface and activity were
high with PTH and after its withdrawal and suppressed with ALN
and RAL and remained suppressed after withdrawal only in ALN
group.

Bone strength is one of the important factors that predict
clinical fracture risk.2" Regression modeling to select the best
variables to predict bone strength was limited by the fact that
BV/TV and the parameters of bone quality were largely
interdependent. The bone-quality parameters such as bone
size, thickness, trabecular number, and degree of mineralization,
were highly correlated with BV/TV, as observed by the correlation
coefficients in this experiment and others.?>% Clinical studies
also have shown that the changes in trabecular bone volume are
associated with a greater gain in bone mass with PTH
treatment.?® Our finite-element analyses of rats’ vertebral
bodies showed that with the trabecular bone loss after OVX, the
load-carrying role of the cortical shell increased significantly, and
this was positively correlated with vertebral cross-sectional area,
a parameter that was greatly affected by increased bone
remodeling of estrogen deficiency and further by antiresorptive
and anabolic treatment of bone. The distribution of the load-
carrying capacity of the vertebral body is complex and occurs
through both the trabecular bone and the cortical shell"®;
therefore, the evaluation of overall vertebral strength is
challenging because each component may respond differently
to both osteoporosis and treatment with bone antiresorptive or
anabolic agents. Rockoff and colleagues®® reported that the
cortical shell accounted for approximately 45% to 75% of the
vertebral strength and that more force was transmitted via the
cortical shell with aging. Recent data using high-resolution nCT-

based finite-element models on human vertebra indicate
significant variations in load-sharing capacity across vertebrae,
with a maximum load fraction carried by trabecular bone
occurring near endplates and that of cortical bone at the mid-
transverse sections.’® Although the direction of functional
loading is likely to be different in rat and human vertebrae, with
the endplates removed during the ex vivo compression of our
model vertebrae, the cortical bone may have further contributed
to the overall strength, as supported by our finite-element
analyses.

All drug treatments improved bone structural and material
strength; however, only PTH improved the vertebral yield stress.
From a clinical perspective, the skeleton may benefit further from
such an influence when it comes to fracture resistance. Higher
yield stress means that the elastic properties of bone allow
further strain for a given stress prior to failure. In other words, the
ultrastructure of the material within mineral and matrix is better
able to resume its original shape on removal of the load.?” This
to a large part is a quality of bone from younger individuals, but
likely at the expense of taking lower loads,?®?? whereas with
PTH treatment the bone maximum load also was increased. The
bone under influence of intermittent PTH has been shown, using
quantitative backscattered electron imaging, to have an
increased percentage of newly formed matrix of lower mineral
density,®*? which may explain the higher yield load observed
here and in other preclinical models.®" Interestingly, our
laboratory group has reported previously that daily PTH
treatment of OVX rats for 6 months resulted in a more
heterogeneous distribution of mineral across the trabecular
bone surface compared with OVX rats treated with bispho-
sphonates or placebo, providing additional support for a new
bone with a lower mineral concentration resulting in improve-
ment in yield loads.®? However, in this study we used a relatively
low dose of PTH and a shorter treatment period compared with
our previous experiment. We did not observe significant changes
in the trabecular BMD following PTH treatment. However,
mineral density in cortical bone increased with PTH treatment
and not with ALN or RAL treatment, which potentially may
explain the superior antifracture efficacy of PTH on cortical bone
compared to antiresorptive treatments.

An important clinical consideration in patients with osteo-
porosis is to maintain bone strength after the bone-active agents
are discontinued. After withdrawal of treatments, ALN main-
tained cancellous, while PTH maintained cortical bone strength
up to 4 months. The mechanical improvements with RAL were
limited only to the treatment period and disappeared on
withdrawal of the treatment. Fuchs and colleagues™ also treated
OVX rats with bisphosphonates for 8 weeks and evaluated the
animals 16 weeks after the study medication was withdrawn and
found that while there were reductions in lumbar BMD and
surface-based bone turnover, the ultimate force of lumbar
vertebrae remained higher in the treated animals compared with
the controls.

Black and colleagues™ reported in the Fracture Intervention
Trial Long-term Extension (FLEX) that osteopenic women who
discontinued alendronate after 5 years showed a moderate
decline in hip BMD of 2.4% and in lumbar spine BMD of 3.7%
and an increase in the bone resorption marker cross-linked

. 578  Journal of Bone and Mineral Research

SHAHNAZARI ET AL.



C-telopeptide (CTX-1) of 55.6%. But all BMD and turnover
measurements remained at or above pretreatment levels 10
years earlier. In addition, there was no higher fracture risk in the
women who discontinued the ALN compared with those who
continued ALN, suggesting that there was maintenance of bone
strength after the bisphosphonate was discontinued at an
anatomic site with a high fraction of trabecular bone even with
some reduction in BMD and increase in bone turnover. Our
preclinical results support the clinical observation that at least
4 months after ALN was discontinued in rats, bone strength was
maintained at the lumbar spine. Additional studies are now
required to assess the duration of the preservation of bone
strength after the discontinuation of bisphosphonates because
this will be a useful guide for clinicians on how to cycle
antiresorptive agents and maintain bone strength and fracture
risk reduction.

Osteoporotic patients treated with PTH fragments generally
have a robust increase in lumbar spine bone mass and reduction
in incident vertebral fractures. A number of clinical studies have
reported that after PTH treatment is discontinued, there is a
reduction in lumbar spine BMD if an antiresorptive agent is not
instituted or continued.®***% However, Lindsay and collea-
gues” reported that postmenopausal women with osteoporosis
treated with PTH for a mean of 18 months had a reduction in
vertebral fracture risk that persisted for at least 18 months after
discontinuation of the therapy despite some loss of lumbar spine
BMD with discontinuation of PTH.®> Our preclinical study did
not support these findings.

Interestingly, in our study, 4 months after the PTH treatment
was withdrawn, the bending strength of the tibia remained
higher than that in untreated animals. While PTH treatment
rapidly adds new bone to trabecular and endosteal surfaces, it
also induces increased Haversian remodeling with resulting
cortical porosity that is dose-dependent.®°3? After PTH
treatment is discontinued, the remodeling space can fill in,
and this could result in an increase in cortical bone mass and
bone strength.*°*" In a study by Black and colleagues,®
treatment of postmenopausal women with osteoporosis for 1
year with PTH fragments followed by 1 year of placebo treatment
resulted in no change in total hip and femoral neck BMD
measured by DXA and cortical hip volume measured by
quantitative CT (QCT), whereas BMD and bone mineral content
of the cortical bone of the hip measured by QCT decreased from
1.4% to 3%; this suggested that bone size was maintained after
the treatment. Femoral bone strength, estimated by finite-
element modeling, was maintained with 1 year PTH treatment
followed by 1 year of placebo.** We used a low dose of PTH and
did not observe a significant amount of elevated Haversian
remodeling; however, we did find an increase in cortical bone
cross-sectional moment of inertia and thickness with PTH
treatment that was maintained after 4 months of withdrawal,
which may explain in part the higher tibial bending load.

Our study has a number of strengths, including the evaluation
of bone-active agents currently used in clinical practice for the
treatment of osteoporosis, a number of sophisticated outcome
measures of bone quality, and a study design that evaluated
bone strength and quality after 8 months of drug withdrawal.
However, there are also a number of shortcomings. First, we used

a relatively low dose of hPTH(1-34), making our data difficult to
compare with other animal studies. We only evaluated one dose
of each bone-active medication, so the effects of dose on aspects
of bone quality could not be provided. Also, we had a number of
endpoints that required ex vivo samples, so we could not
perform repeated measures on these endpoints on the same
animals. However, we had a sufficient number of animals in each
group to have more than 80% power to test our specific aims.
Last, we did not perform any cell-based studies to better
understand how these bone-active medications influence
cellular mechanisms. Additional studies that incorporate the
effects of these medications on bone cell and bone strength
measures are needed.

In summary, in our OVX rat model, RAL and PTH treatments
were shown to induce changes in trabecular bone that
disappeared rapidly after cessation of the treatments, whereas
the higher trabecular bone mass following ALN treatment was
sustained for 8 months after withdrawal of the treatment. After
withdrawal of the treatments, ALN maintained trabecular bone
strength, whereas PTH maintained cortical bone strength up to 4
months; the mechanical improvements with RAL were limited
only to the treatment period. Additional studies are required to
determine the long-term effects of bone strength after
discontinuation of osteoporosis medications and to discern
how the combination or cyclic therapies will provide better
treatment options to improve the long-term treatment of
osteoporosis.
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